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PREFACE

The Pattern Analysis Branch, Mapping, Charting and Geodesy (MC&G)
Division, of the Naval Ocean Research and Development Activity (NORDA)

- has been involved over the past several years in the development of

algorithms and techniques for computer recognition of free-form
handprinted symbols as they appear on the NDefense Mapping Agency (DMA)
maps and charts. NORDA has made significant contributions to the
automation of MC&G through advancing the state of the art in such
information extraction techniques. In particular, new concepts in
character (symbol) skeletonization, rugged feature measurements, and
expert system-oriented decision logic have allowed the development of
a very high performance Handprinted Symbol Recognition (HSR) system
for identifying depth soundings from naval smooth sheets (accuracies
greater than 99.5%).

The study reported in this technical note is part of NORDA's continu-
ing research and development in pattern and shape analysis as it
applies to Navy and DMA ocean/environment problems. The issue addres-
sed in this technical note deals with emerging areas of syntactic and
semantic techniques in pattern recognition as they might apply to the
free-form symbol problem.-The author was asked to review these power-
ful tools in 1ight of his eariier support to the Pattern Analysis
Laboratory [1] and to analyze their potential for extending the HSR
system to a wider range of symbols. These results contribute to the
overall NORDA R&D effort to investigate and develop methods for more
precise geometric shape descriptions “or application to Ocean Science
Information Extraction (0SIS) problems.

’ Approved for public relecas;
Distributoa Unlimited
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I. INTRODUCTION

This report discusses a character recognition approach based on the
use of syntactic/semantic concepts. This approach is consistent with
our earlier work for NORDA in the sense that it is based on the same
philosophy and types of features that were recommended in an earlier
report [1] and which have been investigated since then. The material in
the following sections unifies these recommendations and includes
extensions such as techniques for handling interconnections between fea-
tures, the recognition of feature strings by syntactic methods, and the
use of semantics for quality assurance both in the computation of
features and in the recognition stage. The methods described in this
report are intended as a complement to the techniques presently being
used in the NORDA OCR system, and as a potential tool for handling forth-
coming problems in alphanumeric character recognition.

The structure of the proposed approach is shown diagramatically in
Fig. 1. It is assumed that the input to the system is a skeleton of
the character to be recognized. The selection of a skeleton input is
consistent with the processing capabilities of the present OCR system.

A skeleton representation also has the advantage that it facilitates the
computation of features such as bays, lakes, and branch points, which have
been deemed essential for rugged character representations. It is noted,
however, that the methods discussed in the following sections could

easily be modified to accept character outline (border) inputs.
The feature extraction and attribute assignment stage has the

function of computing and quantifying all the features required for
recognition. As explained in more detail in Section 2, this stage is
based on a hierarchical, semantic-guided approach. The function of the
screening stage is to select a particular set of recognition modules to
process a given input. The basic idea is that, at this point in the overall
process, the features detected in a character can be used to advantage

in guiding the recognition strategy to be applied to the input. The
pre-selection of a subset of recognition procedures not only simplifies

e~ - ——
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the organization of the classifier, but has the added advantage of
operational efficiency. The recognizer is based on the use of syntactic/
semantic techniques. As described in Section 3, the syntax establishes
the structure of the pattern classes under consideration, while the
semantics establish the meaning or validity of a particular pattern in
the context of fhat structure.

One of the most important aspects in the selection of any pattern
recognition approach is the availability of learning algorithms.

The techniques discussed in this report are formulated to take advantage
of one of the most powerful learning techniques available for syntactic
systems. As discussed in Section 4, the proposed learning algorithm
depends on only one user-specified parameter, and the behavior of the
procedure as a function of this parameter is well understood and easily
analyzed.

Another important advantage of the approach discussed in the
following sections is that it includes a procedure for checking class
separability. Given the recognizers learned from a set of training
pattern classes, the procedure discussed in Section 5 identifies the
patterns that cannot be classified into a unique class, thus yielding
information related to the discriminatory power of the features used in
the system, and the structure of the patterns in the overlapping regions.

Although as indicated above, learning algorithms already exist for
the syntactic components of the character processor, no such algorithms
are yet known for the semantics. The material in Section 6 addresses this
problem from an interactive point of view which utilizes automatic
learning for the syntax and user-defined rules to establish the correspond-
ing semantic components of the system.




IT. FEATURE EXTRACTION AND ATTRIBUTE ASSIGNMENT

2.1 Background
In this section we discuss a hierarchical, semantics-based approach

for feature extraction, as well as the assignment of attributes to those
features.

The basic approach is shown diagramatically in Fig. 2. For features
at level k of the hierarchy, we consider a structural description of
the form

Level k/features/attributes/primitives/semantic rules

The hierarchical nature of the method implies that the procedure starts
with simple primitives and successively builds more complex features from
them. It is noted that what we call primitives in the computation of
a feature at level k may be features that have been computed at levels
Tower than k. This terminology is used for consistency in the structural
description given above.

The attributes are used for characterizing each feature with descrip-
tors such as length, orientation, and location of its centroid. The
use of semantics allows quality control of the features generated at
all levels of the hierarchy. The approach is to use semantic rules in
order to guarantee that all features used for subsequent recognition are
meaningful in the context of character recognition.

Level zero of the hierarchy consists of the input data to the recog-
nition system (e.g., character skeletons). The function of the other
levels is explained in the following sections.

2.2 Level One: End Points
Level 1 of the hierarchy extracts all end points in a given skeleton.
The structural description is

Level 1/end point/attributes/primitives/semantic rules

where the elements of the description are as follows:

- Y - "U‘t;,‘"‘\ PN
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Attributes
The only attribute assigned to an end point is its location.

Primitives
The primitive of an end point is a single pixel satisfying the follow-
ing rule:

Semantic Rule
R](l) = TRUE for any pixel with exactly one m-neighbor.
Thus, all pixels for which Rl(]) is TRUE are labeled as end-point features.

2.3 Level Two: Branch Points
Level 2 of the hierarchy extracts branch points using the following
desciiption

Level 2/branch point/attributes/primitives/semantic rules
where the elements of the description are as follows:

Attributes
The attributes assigned to a branch point are its location and number
of branches attached to it.

Primitives
The only primitive of a branch point is a single pixel satisfying
the following rule:

Semantic rule
R](Z) = TRUE for any pixe? with more than two, and less than T](Z),
m-neighbors, where T](Z) is a threshold (e.g., four).
A1l pixels in an input skeleton for which R](Z) is TRUE are labeled as
branch-point features.

2.4 Level Three: Arcs

Arc features have the structural description
Level 4/arc/attributes/primitives/semantic rules

where the elements of the description are as follows:




Attributes

The attributes assigned to an arc are the location of its two termi-
nator points and its length., A terminator point in this case is either
an end point or a branch point,+ and the arc length is the checker-board
distance between the terminator points.

Primitives
The primitives of an arc are the set of pixels satisfying the follow-
ing semantic rules:

Semantic Rules
R](3) TRUE if only two distinct pixels are terminator points.
R2(3) TRUE if there is only one set of pixels, each pixel having
exactly two m-neighbors, and lying between the terminator

"

points identified in R](3).
An arc feature is then a set of pixels for which R](3)(\R2(3) = TRUE.

2.5 Level Four: Llakes
The structural description for lakes has the form

Level 4/lake/attributes/primitives/semantic rules

Attributes

The attributes assigned to a lake feature are: (1) the location of
its centroid: (2) the error of its least-square-error elliptical fit (see
Appendix A); (3) the direction of its principal axes, d](4) and d2(4);
(4) the variance (spread) along each principal axis, v](4) and v2(4); and
(5) the location of any branch points along the boundary.

Primitives
The primitives of a lake are pixels satisfying the following semantic
rules:

+More generally, a terminator point is any pixel that denotes the end of a

feature. The feature may be embedded between two other features, in
which case both terminator points could be internal pixels.
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Semantic rules

R](4) = TRUE if there is a set of m-connected pixels (including
branch points) forming a closed boundary.

R2(4) = TRUE if the elliptical fit error is less than a threshold
T](4).

R3(4) = TRUE if the ratio v1(1)/v2(1) is less than a threshold

T2(4), where it is assumed that v](l) > v2(1).

Thus, a lake feature is a set of pixels for which R](4)r\R2(4)f\R3(4) =
TRUE. It is noted that rule R](4) establishes a lake in the general sense
that it refers to a closed boundary. Rules R2(4) and R3(4), however,
further refine this concept by establishing a valid lake shape for the
purpose of character recognition.

2.6 Level Five: Polygonal Segments

The features discussed in this and the following three sections deal
with the characterization of arcs. The first step is to approximate a
given arc by a set of connected polygonal segments using the structural

description
Level 5/polygonal segment/attributes/primitives/semantic rules
The elements of this description are as follows:

Attributes

The attributes used for each polygonal segment are: (1) length, (2)
direction, (3) location of terminator points, (4) location of centroid
(i.e., midpoint), and (5) approximation error.

Primitives
The primitives of polygonal segments are the pixels in a given arc.

Semantie rules
R](S) = TRUE if the mean-squared error between a polygonal segment
and its corresponding arc is less than a threshold Tl(S).
R2(5) = TRUE if the number of polygonal segments satisfying R1(5)
is less than a threshold T2(5).




We say that a polygonal approximation of a given arc is valid if R](S)r\
RZ(S) = TRUE. Semantic rule R](S) establishes, by means of T](S), an
acceptable approximation in a mean-squared-error sense. Since it is
always possible to make all errors arbitrarily small (the l1imiting case
is zero by using n - 1 segments, where n is the number of pixels),
semantic rule RZ(S) is used as an "irregularity filter." That is, pre-
selecting the maximum number of polygonal segments that are allowed
eliminates as unacceptable irregular arcs that require a greater number
of segments in order to satisfy the error criterion in Rule R](S).

The direction attribute of each polygonal segment is quantized into
one of eight possible directions, as shown in Fig. 3. Since two
directions differing by 180° are possible for each segment, the ambiguity
is resolved by assuming a standard clockwise, up-down scan of the poly-
gonal structure.

2.7 Llevel Six: Straight-Line Segments
At this level in the hierarchy we consider straight-line segments

(SLS's) which are the least complex features that can be formed using
polygonal segments as primitives. The structural description is as
follows:

Level 6/SLS/attributes/primitives/semantic rules

Attributes

The attributes of each SLS are: (1) length, (2) direction, (3) loca-
tion of its centroid, and (4) location of its terminator points. Although,
as will be seen below, an SLS may be composed of a series of polygonal
segments, the length of an SLS feature is defined as the Euclidean
distance between its terminator points, its direction is defined as the
direction of a line passing through these two points, and its centroid
is simply the midpoint. The direction attribute is encoded using the
approach indicated in the previous section.

Primitives
The primitives of an SLS are polygonal segments satisfying the follow-
ing semantic rules:




Figure 3. Octants used for quantizing direction.
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Semantic Rules

R](G) = TRUE if two contiguous polygonal segments have an interior
angle greater than a threshold T](6).

R2(6) = TRUE if a single polygonal segment has length greater than
TZ(G)*L where L is the sum of the lengths of all the
polygonal segments and T2(6) is a constant less than one.

R3(6) = TRUE if there is only one polygonal segment.

Rule R](6) is applied recursively and any segments for which R](B)L)RZ(G)\)
R3(6) = TRUE are classified as SLS's.

2.8 Level Seven: Corners

Cor'ner'sJr have the structural description
Level 7/corner/attributes/primitives/semantic rules

Attributes

The attributes are: (1) angle, (2) depth, (3) width, (4) area,
(5) direction, (6) length of sides, (7) location of the terminator points,
(8) location of the centroid, (9) convexity, and (10) concavity. The
meaning of these attributes may be explained with the aid of Fig. 4. The
angle of a corner is defined to be the interior angle formed by the two
s.des. If we treat the corner as a triangle, as shown in Fig. 4, the
width is defined as the length of the base of the triangle, while the
depth is the length of its altitude. The area is the area of the
triangle. The direction of the corner (quantized as in Fig. 3) is given
by the direction of the altitude segment directed from the corner point
to the base. The centroid of a corner is the average of the centroids
of its sides. To establish whether a corner is convex or concave we
consider a traveler traversing the corner in a clockwise up-down manner.
If the base of the triangle lies to the travelers right hand, the corner
is convex; otherwise it is concave.

+This classification of corners is not related to the measures of
cornericity discussed in Appendix B.

-
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Primitives
The primitives of corners are SLS's satisfying the following semantic

rules:

Semantic rules

R1(7) = TRUE if R3(6) = FALSE

R2(7) = TRUE if there remain two or more contiguous SLS's after the

recursive application of rule R](G).

If R](7)(\R2(7) = TRUE we have the condition for at least one corner.
If there are more than two contiguous SLS's, they are considered pairwise,
each contiguous pair forming a corner and possibly sharing sides with
other contiguous corners.

2.9 Level Eight: Bays
The final features computed by the hierarchical feature extractor

are bays, which have the structural description

Level 8/bay/attributes/primitives/semantic rules

Attributes

The attributes of a bay are: (1) opening, (2) area, (3) direction
(4) degree, (5) height-to-width ratio (H/W), (6) length, (7) location
of the terminator points, (8) location of the centroid, (9) convexity,
and (10) concavity. The opening attribute is simply the Euclidean dis-
tance between the two terminator points. The area is the sum of the areas
of the corners forming the bay (see below). The direction of a bay is
the average of the directions of the corners. The degree of a bay is
defined as the number of corners of which it is composed. The attribute
H/W is the height-to-width ratio of a bounding box (the orientation of
the box could be along the principal eigen axes or simply along the x-y
extremes). The length of a bay is equal to the sum of the lengths of
the sides of the corners. The centroid is the average of the corner
centroids. Finally, a convex (concave) bay is formed by two or more
convex {concave) corners.




Primitives
The primitives of a bay are corners satisfying the following semantic

rule:

Semantic rule

R](S) = TRUE if there are two or more convex (concave) contiguous

corners.

Thus, the presence of a bay is established simply by combining corner
features which are contiguous and have the same convexity or concavity
attribute.

The material in Section 2.2 through 2.9 1s summarized in Table 1
and illustrated in the following example.

Example

The concepts discussed thus far are illustrated in Fig. 5. The input
to the hierarchical feature extractor is shown in Fig. 5(a), and the
result of the first level of processing is to attach the labels E1 and E2
to the two end points in the character, as shown in Fig. 5(b). Level 2
produces a null output (there are no branch points), while Level 3 identi-
fies arcy and terminator points t] and t2. It is noted that 4 and t2
are simply the end points found in Level 1. Since there are no lakes in
the character, Level 4 produces a null output. Level 5 produces polygonal
segments $ through Sg» S shown in Fig. 5(d). Note the introduction of
terminator points ty through t6 used to denote the ends of the polygonal
segments. Level 6 has the output shown in Fig. 5(e). Polygonal segments
Sy and S4 were combined in this case into straight-line segment SLS3 and
consequently, terminator point t5 is no longer of interest. Level 7
produces corners Cqys €35 and Cqys along with their terminator points. It
is noted that t4 is a terminator point for both 9 and C3 and that <, has
terminator points t3 and t6. Finally, the output of Level 7 is shown in
Fig. 5(g). It combined corners ¢ and <, into bay, with terminator
points t] and t5. Thus, the highest-level description of the input
character consists of bay] followed by corner,.

It is important to note that all the information computed at a given
Tevel is available to all higher levels. Thus, the descriptors associated

14
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(c)

Figure 5. 1Illustration of the hierarchical
feature extractor. '




(9)

Figure 5.

(Continued).
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with the location of terminator points, length and direction of line
segments, etc., are implicitly available to further refine the final
features for the purpose of establishing their semantic validity.

2.10 Coding of Feature Strings
Once individual features have been extracted and their attributes

computed, the next processing step is to organize the features in the
form of a string suitable for the syntactic/semantic recognizer. A set
of m features extracted from a given input character will be represented
by the string notation

a = f]fZ"'fm

where each fi represents any of the features obtained by the procedures
discussed in Sections 2.2 through 2.9.

As discussed in Section 3, the basic structure of a character will
be inherent in its string representation, while semantic rules will be
used for quantitatively refining the information available in a given
string. In crder to simplify the notation, the following codes will be
used to denota the features discussed in the preceding sections.

p: branch point

a: lake

s: straight line segment
¢c: corner

b: bay

X: convex

v: concave

It is noted that the last two codes refer to attributes which apply
to corners and bays. Although these two attributes could be incorporated
in the semantic rules, they are included in the string representation
as a rugged, overall descriptor to differentiate, for example, between
5's and S's. The refinement of a given corner or bay (i.e., direction,
length, etc.) will be handled via the semantics. As indicated in
Section 3, the degree of information incorporated in a string vs. a
semantic specification is an arbitrary trade-off. The approach taken here




is, to include in a string, features and descriptors which can aid in making
gross decisions between characters early in the recognition stage. It

is also noted that end points, arcs, and polygonal segments are not
included in the feature codes. The reason for this is that they are
either implicit in, or refined into, one or more of the features coded
above prior to recognition.

In order to reduce the complexity of the recognition stage, it is
advantageous to organize all coded strings in a systematic manner. One
way to accomplish this is to group all features in order of increasing
complexity in the feature hierarchy discussed in Sections 2.2 through 2.9.
For example, a character composed of a bay, a lake, a branch point, and
a straight-line segment would be coded as the string a = pasb. The
descriptors x and v precede the feature they modify. If the bay in this
example were convex, the complete string representation would then be
a = pascb. Multiple features of the same class are grouped together. If,
for instance, there were two branch points the string would be o = ppasch.
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IIT. SYNTACTIC/SEMANTIC RECOGNITION

3.1 Background

The existence of recognizable, finitely describable structure in
a pattern is essential for success in the syntactic approach. Basically,

a formal grammar is developed to generate elements of a language that
defines a pattern class, and an automaton or a parsing algorithm is used
to recognize precisely that language [2,3].

For example, the grammar G, = (N,z,P,S,) with nonterminals N = {S,B,C},
terminals @ = {a,b,c}, productions P = {S - aSBC, S— aBC, CB—BC, aB —
ab, bB—bb, bC—>bc, cC—>cc}, and starting symbol S, can be shown to
generate the Tanguage

L(G)) = (yly = a""c", n > 1) .

If the terminals a,b,c have an interpretation as pattern primitives which
are unit-length directed Tine segments

a // b— c\\

then L(G]) defines a class of equilateral triangles via a trace of the
boundary of a triangle, as shown in Fig. 6. The nature of the productions
makes grammar G] a context-sensitive grammar.

Many, if not all, practical pattern recognition systems that use
structural models are in fact hybrid systems [4]; that is, they are combi-
nations of structural modeling techniques (primarily using syntactic models)
and classical decision-theoretic techniques. One frequently finds that
decision-theoretic methods are used to identify and extract the primitives
in a given pattern, then syntactic methods are used to attempt the final
classification by an analysis of the relationships among the primitives.

The productions in a grammar like G] above are purely syntax rules.
They define implicitly the form that strings of terminals must have in
order to belong to the language L(G]). In the example given above, that

S e epmt——. s~ 2 g e
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Pattern String Representation
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Figure 6. Patterns and their representation as
strings.
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form is a"p"c" or, in words, "at least one a followed by the same number
of b's followed by the same number of c's.” But the productions in the
grammar G] do not deal in any way with values--numerical, vector, logical,
or otherwise--that terminals a,b,c might take on.

The assignment of quantitative information to features in a syntactic
pattern recognition formulation is accomplished via the use of attributed
grammars [4-8}. The term "attributed” in this context means that we will
employ a conventional syntactic grammar, but will now allow the terminals
and nonterminals to have associated attributes which are assigned values
by some predefined mechanism. For example, the syntactic description of
certain types of 2's is given by the string a = xbvc (i.e., a convex bay
followed by a concave corner). As discussed in Section 2, each feature
has a given set of attributes, such as direction and length, which are
quantifiers of that feature. Thus, the use of syntax establishes a given
basic structure, while the attributes attach quantitative descriptions
to the features forming that structure. The rules for assigning meaning
to the resulting attributed structure are semantic rules analogous in form
to the semantic rules described previously in connection with hierarchical
feature extraction. In the case of recognition, however, the semantic
rules are used for assigning meaning (i.e., valid vs. invalid character)
to the overall structure. Thus, we see that the attributed-grammar
approach to recognition involves three principal elements: (1) the
specification of a conventional syntactic grammar, (2) the use of
attributes for quantifying the features, and (3) the specification of a
set of semantic rules for assigning meaning to an attributed structure.

There are two major reasons for considering attributed grammars in
structural recognition. First, in most problems, it makes more sense to
identify features as symbols together with their attribute values than
it does to try to package all information about the primitives into a
much larger set of symbols without attributes. Second, it is well known
that the use of attributes and associated semantic rules can dramatically
reduce the complexity of the syntactic analysis of certain classes of
patterns [9].

As an illustration, we reconsider the context-sensitive language
{yly = a"b"c", n > 1} generated by the grammar G] given earlier. The
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inclusion of some very simple semantic rules allows the use of a much
simpler regular grammar, as follows. The regular grammar G, = (N,ziP,S)
with nonterminal N = {S}, terminals ¢ = {a,b,c}, productions P = {S =+ a§,
52 -+ bS, S3 + ¢S, S4 + ¢} numbered for reference, and starting symbol S,
generates a language L(Gz) that properly contains L(Gl); thus, all strings
in L(G]) are syntactically correct for L(GZ) as well, but there are
additional strings in L(Gz) that must be rejected. The semantic rules
must be developed to disallow all derivation trees for strings in L(G,) -
L(G,), that is, all strings not of the form a"bncn,n > 1. In words, these
rules require:

(1) al1 uses of production #m before production #m + 1 for 1 <m < 3;

and
(2) the same number of uses of production #1 as of production #2 as

of productions #3 + #4.

This example illustrates the fact that a simple regular grammar,
along with some simple semantic rules, can be made to behave as a much
more powerful context-sensitive grammar. As will be seen in Section 4,
this is an important point because learning algorithms for regular
grammars are relatively easy to formulate.

3.2 Specification of Semantic Rules
Although, as explained in Section 4, it is possible to learn regular

grammars by utilizing training samples in a grammatical inference algorithm,
no automatic procedures exist for specifying semantic rules. This, however,
is not a particularly serious limitation if the semantic rules are
specified interactively using an approach such as the one suggested in
Section 6.

The semantic rules for recognition are similar in nature to those
already discussed for the hierarchical feature extractor, with the
exception that they apply in general not only to single features, but also
to combinations of features, as well as the production rules in a given
grammar. These concepts are illustrated in the following section.

3.3 Example of Syntactic/Semantic Specification
The ma*erial d.zcussed in the previous two sections is illustrated
in this section by a syntactic/semantic specification for open-top 0's.




where
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With reference to the feature codes discussed in Section 2.10, a grammar
. . . +
for recognizing a large class of this type of character is given by

and the productions in P are

(1) s »
(2) s »
(3) s »
(4) S »
(5) A »

The semantic

-
—
1}

xb
xbA
XCA
ves
ve

rules for this grammar are

G = (N,z,P,S)
N = {S,A,B}
r = {b,c,x,v}
(6) A + vcB
(7) B » xb
(8) B + xc
(9) B + xbS
(10) B > xc$
t+

TRUE if the average direction of all convex bays and

corners is 1 or 2 (see Fig. 3).
rp, = TRUE if the area of each concavity is less than T]*
[average convexity area).

rs = TRUE if, when production (1) is applied, the degree of the
bay is 3 or greater.

rq = TRUE if (i) production (4) is not repeated consecutively,
and (ii) production (5) does not follow production (3).

re = TRUE if OPENING, defined as the Euclidean distance between
the terminator points, is less than Tz* [overall length].

+A grammar can be obtained in one of two ways: (1) heuristically by
studying characters of interest, or (2) by formal grammatical inference
techniques. The grammar given in this section was obtained by the former
approach. Grammatical inference is discussed in Section 4,

Ttsemantic rules for recognition are denoted by lower case r's in order
to differentiate them from semantic rules for the hierarchical feature

extractor.
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re ~ TRUE if H/W > T3.

where T] and T2 and T3 are constant threshold values. A given character
is recognized as an open-top zero if its string representation is
syntactically correct (determined by the syntactic recognizer, as
discussed later) and U ry = TRUE, i = 1,2,...,6. In other words, the
input must be both syntactically and semantically correct to be accepted.
The structure (syntax) of acceptable characters is established by

the production rules. For example, the first production yields a convex
bay, while the use of productions (2), (6), and (7) yields a convex bay,

followed by a concave corner, followed by a convex bay.

Semantic rule " establishes the acceptable direction of the overall
convexity to be between 45° and 135°. (The average direction of all
convexities is a rugged representation of the direction of the opening.)
Semantic rule ry precludes large concavities and thus gives a Tow-level
guarantee of regularity. Rule ry establishes a minimum regularity of the
boundary. For example, a bay of degree 3 closely resembles a triangle,
which is deemed unacceptable for a zero. Rule ra simitarly excludes
il1-formed characters. Rule rs excludes large openings ("large" being
measured as a fraction of overall length in order to make this rule
insensitive to size.) Finally, rule e precludes zeros which are short
and fat beyond a given threshold. Figure 7 shows some acceptable characters
and Fig. 8 shows some characters which would be rejected as being either
syntactically or semantically incorrect.

3.4 Recognizer

Grammars were shown in the previous three sections to be generators
of string sets. In this section, we consider the problem of recognizing
a given syntactic/semantic string representation.

In terms of overall system specification--representation, learning,
and recognition--the most practical approach is to employ regular grammars
because of the availability of learning algorithms and the simplicity
of formulation for the recognizer. As indicated in Section 3.1, the
utilization of semantic rules allows considerable expansion of the
pattern-representation power of regular grammars.

- - .,.‘-: ‘,' m".\“ - * . v- T" ."".— : - )
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(1) (2) (6) (7)

(a) (b)

(3) (6) (9) (4) () (2) (6) (8)

{c) (d)

Figure 7. Characters which are both syntactically and semanti-
cally correct. The strings of numbers correspond to the sequence
of productions which would generate the corresponding character.
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o <

(a) (b)

0

(c)

Figure 8. Examples of unacceptable characters. The patterns
shown in (a), (b) and (c) are all syntactically correct, but

violate semantic rules r., r,, and r,, respectively. The
éctically incorrect.

pattern shown in (d) is B3ynt
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The formal recognizer for regular languages is the finite automaton,
defined as a five-tuple A = (Q,z,c,qo,F), where
Q is a finite set of states,
L is a finite input alphabet
§ is a mapping from Q x I into 20, the collection of all
subsets of Q,
% in Q is the starting state, and
F,a subset of Q, is a set of final or accepting states.
We say that a given string is recognized by A if, starting in state 9,>
the automaton is capable of scanning the entire string and it is in one
of the states of F after the last symbol in the string has been processed.
As an illustration of this notation, consider the automaton A = (Q,I,
s,qo,F) with

Q= {qo,q]}, : = {a,b}, F = {q]}
and mappings

G(qo.a) = {qo}
6(qosb) = {q]}
§(gy,a) = 6(aqysb) = ¢

where ¢ is the null set (undefined states in this case).

A finite automaton is conveniently represented by its state transition
diagram, a directed graph whose nodes, corresponding to states, are
connected by arcs that are labeled with input symbols which cause transi-
tions. By convention, all final states are denoted by double circles and
the starting state is designated by an entering arrow.

The state transition diagram for the example just given is shown
in Fig. 9. It is noted that this automaton remains in state 9% for any
number of input a's, and makes a transition to the final state when a
symbol b occurs in the string. Thus, the language accepted by the automaten
consists of the set of strings of the form {a"b}, n > 0. Al other
strings are rejected. For example, input abb is not accepted because
G(qo,a) = {qo}, G(qo,b) = {ql}. but a(q],b) = ¢, causing A to halt because
it is unable to complete processing theentirestring.

-
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Figure 9.

State transition diagram.
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In order to incorporate the semantic specifications discussed in the
previous section into the recognition procedure, it is important to estab-
lish the relationship between a grammar and its corresponding automaton.
This relationship is based on a fundamental theorem from formal language
theory which states that a language is recognized by a finite automaton
iff it is generated by a regular grammar [3].

Given a regular grammar G = (N,Z,P,Xo), where X0 is the starting
symbol, the corresponding finite automaton A= (Q,z,c,qo,F) is specified
as follows.' Suppose the nonterminal set N is composed of the starting
’Xn’ Then, the state
’qn’qn+1} such that q;
is an additional state such

symbol Xo and n additional nonterminals X],Xz,...
set Q of A is formed by n + 2 states {qo,q],...
corresponds to X. for 0 < i <n, and Q41
that F = {qn+]}. The set of input symbols of A is the same as £ in G, and
the 5§ mapping is defined by two rules based on the productions of G, as
follows: For 0 <i <n, 0<Jj<n, and any a in 1,
1) if X; » aX; is in P, then s(qi,a) contains a3 and
2) if X; ~a is in P, then s(qi,a) contains U4y *

As an illustration of this procedure, consider the grammar for open-
top 0's given in Section 3.3. This grammar is easily converted to

regular form by defining the following symbols

b] = xb
b2 = XC
b3 = V¢
Using these symbo]§ and the above notation for the nonterminals, (i.e.,
S = Xo’ A= X], and B = Xz), the grammar becomes
G = (N’ZQP’XO)
where
N = {xosxlaxz}
I = {b],bz,b3}

+A similar procedure exists for obtaining the regular grammar corresponding
to a given finite automaton [3].
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and the productions in P are

(1) XO > b] (6) X] > b3X2
(2) X0 > b1X] (7) X2 + b.|
(3) XO -+ b2X1 (8) X2 > b2
(4) Xy > b3X, (9) X5 ~ byXy
(5) X.I -+ b3 (10) X2 -+ bzxo

Based on the preceding discussion, the automaton A = (Q,z,é,qo,F)
corresponding to this grammar has the state set

Q= {qo,q],qz,q3}

symbol set

™~
1}

- {b]’bZ’b3}

and final state set

F {Q3}

The mappings are obtained by applying the two rules given above to the
productions of G. For example, production (5) is of the form shown in
rule 2, so that 5(q1,b3) = {q3}, while production (6) is of the form
shown in rule 1, which gives 5(q1,b3) = {qz}. Thus, the combined mapping
is G(q,,b3) = {q?.,q:s}.Jr Following this procedure yields the following
mappings corresponding to the ten productions of G:

5(qosb1) = {q]’Q3}
5(q°9b2) = {q1}
5(q°»b3) = {qO}
§(ay,b;3) = {q,,4,)
8{q,,by) = {q,,93}
§(a,sby) = {9,495}

*The fact that there are two possible transitions for this state with the
same input symbol indicates that this is a non-deterministic automaton.
As shown in [3], such an automaton is easily made deterministic by
introducing additional states.

*~f“_f‘1{fwu~rﬁ“‘wfm?‘\f‘ P 5 ’ : o




A11 other transitions, for example 6(q],b0), yield the null set, indicating
an unacceptable input string. The state transition diagram is shown
in Fig. 10.

The automaton just obtained is a recognizer based on the structure
(syntax) of strings corresponding to open-top O's. In order to incorporate

the semantic rules discussed in Section 3.3, we first determine if a
given string is syntactically correct (i.e., if it is accepted by the
automaton). If it is, the semantic rules are tested using the procedure
discussed in Section 3.3. The only exception is that, instead of
productions, we use the corresponding mappings in the automaton. For
example, semantic rule ra would now read: ry = TRUE if mapping a(qo,b3)
is not repeated consecutively, and (ii) mapping c(ql,b3) = {q3}+ does not
follow mapping s(qo,bz). This type of information can be easily incorpo-
rated into the recognition process in the form of a history of automaton
transitions as a string is processed.

*hNote that since the automaton is non-deterministic the transition actually
corresponding to production (5) must be used in testing this semantic rule.




Figure 10.

4

Recognizer (finite-automaton) for open-top zeros.
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Iv. LEARNING

4.1 Background

As indicated in the previous section, one of the principal advantages
of using syntactic/semantic formulations in pattern recognition is that
it often allows utilization of grammars which are considerably simpler
than those that would be required if only syntax were employed. In
particular, the use of regular grammars enjoys the distinct advantage of
having the best-developed learning algorithms. The algorithm presented
in this section relies only on one input parameter, and its behavior as
a function of this parameter is fully understood. As will be shown in the
following discussion, this procedure learns the structure of a finite
automaton directly from a sample set of training patterns expressed in the
form of strings.

4.2 {earning Algorithm

Let R be a set of pattern strings (including the empty string) and
let z be a string in £* such that zw is in R for some w in t*. % Given
a non-negative integer k, the k-tail of z with respect to R is defined as
the set {w|jzw in R,|{w| < k}. In other words, the k-tail of a string z is
a set consisting of all the strings w subject to the conditions that, for
any particular w, the string zw is in R and the length of w is less than
or equal to k. For notational convenience, we denote the k-tail set as

h(z,R,k) = {w|zw in R, |w] < k}

This notation clearly shows the functional dependence of the k-tail on z,
R, and k.
Using the k-tail definition, an automaton corresponding to R and a
given value of k is obtained by means of the following procedure [3]:
(1) £ is formed from all the different symbols in R.

Te* is the notation used to represent the set of all strings formed from

symbols of £, including the empty string,




(2) The initial state is given by
a, = h(x,R,k)

where X is the empty string.
(3) The set of states is given by

Q = {q]q = h(z,R,k) for z in z*},
(4) the final state set is given by

F=1{q|lqinQ, A in q}.
(5) The mappings from a state q with an input symbol "a" are
given by

6(q,a) = {a"|a” in Q, q° = h{za,R,k),
q = h(z,R,k)}

This procedure for obtaining an automaton is best explained by an
example. Suppose that R = {a,ab,abb} and we let k = 1. From Step 1, we
have £ = {a,b}. Step 2 gives the starting state as g, = h(x,R,1). From
the above definition of h,

{w [Xw iR, [w| <1}
{a}
q

h(x,R,1)

0

n

In other words, since IA) 0, the only string Aw that is in R, and has
length less than or equal to 1, is a. Thus, the set {a} is defined as
corresponding to state 9y

The set Q of states is obtained from Step 3 by changing z. As shown
above, when z =X we have

h{2,R,1) = {a}

=q°

Next, we select z = a and obtain
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h(a,R,1) = {w|aw in R, |w]| < 1}
= {1,b}

In this case the only strings w that can be appended to z = a with zw
being in R and [w|< 1 are A and b. We define this new set as state g,.
Next we consider the string z = ab and obtain

h(ab,R,1) = {w | abw in R, {w| < 1}
= {x,b}

which does not produce a new state. The next string is z = abb. This

yie] ds s

h{abb,R,1)

)
9

Other strings z in £* will yield, in this case, strings zw that are not in
R, giving rise to a fourth state, denoted by q¢, which corresponds to the
condition that h is the null set. Therefore, we have the state set

Q= {qo’q] ’thq¢}

According to Step 4, the final state set is given by

F=1{q|qinQ,xin q}

= {q1,q2}

Note that, since both 94 and 45 contain A, these two states are in the final

state set.
Finally, the mappings are obtained using Step 5. Starting with Ay
we obtain
s(a,,a) = {a“|q” in Q, 9* = h(xa,R,1),
q, = h(x,R,1)}
—em
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Since q° = h(»a,R,1) = h(a,R,1) = qy» we have
5(q0:a) = Q1
Similarly,
§{qy,b) = {q" | q* in Q, @~ = h(1b,R,1)
4, = h(%,R, 1)}
= q¢
The second step follows from the fact that q“ = h(b,R,1) = q¢.
Next we consider transitions from 9y which has two representations,
h(a,R,1) and h(ab,R,1)}. Using the first representation yields
8(q;,a) = {9" 1 q” in Q, 9~ = h(aa,R,1),
qy = h(a,R,1}
= q¢
Using the second representation we obtain
5(gy,a) = {q” |9~ in Q, g~ = h(aba,R,1),
a = h(ab,R,1)}
= q¢
The transitions from 9, with an input of b are similarly given by
8(qysb) = {q" [q” in Q, 9~ = h(ab,R,1),
Q1 = h(a,R,])}
= q]
and
6(q],b) = {g” | g* in Q, q” = h(abb,R,1),
q] = h(ab’Ri])}
= qz .
Following this procedure for a, and q¢ yields the following mappings: :
i
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G(QZ:a) = q¢
8(qy,b) = a,
6(q¢,a) = q,
6(q¢,b) = q,

The automaton just obtained from the strings in R is shown in Fig. 11.
' It is of interest to note that the automaton recognizes strings of the form
ab", n > 0. This is a reasonable generalization of the structure present

in the strings of the learning set: R = {a,ab,abb}.

4.3 Properties of the Inferred Automaton
Given a specific string set for learning, the procedure discussed in

the previous section has a very important characteristic: it depends only
on the parameter k. Furthermore, the behavior of the learning method is
known to have some useful properties as a function of k. Letting L[A(R,k)]
represent the language accepted by the inferred automaton, A, for a
specific R and k, these properties may be stated as follows [3):

(1) For any k > 0, R is a subset of L[A(R,k)].

(2) If k > m, the length of the longest string in R, then

LIA(R,m)] = R.
(3) If k = 0, then L[A(R,0)] = z*.
(4) LIA(R,k+1)] is a subset of L[A(R,k)].
The first property guarantees that, as a minimum, A will accept all

the strings in R. Property 2 guarantees that A will accept only R if
we set k > m. Property 3 states that k = 0 gives a useless result: an
automaton that accepts all strings composed of symbols from . Finally,
Property 4 simply states that increasing k increases the selectivity of
the recognizer. From these properties, it is easily seen that k must be
in the range 0 < k < m.

o a——— % — .

.
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Figure 11. Inferred automaton.
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V. CHECKING FOR CLASS SEPARABILITY

One of the most important issues in the design of pattern recognition
systems is to have an a priori idea of how well a set of selected features
discriminate between different pattern classes. In the present problem,
this is equivalent to establishing whethcr or not two or more automata
(of different classes) recognize the same subset of strings. In other
words, a string that is recognized by more than one automaton is a result
of overlapping pattern classes. As discussed below, another important
property associated with using finite-state automata as recognizers is
that checking for this type of overlap is reasonably straightforward.

Suppose we have two regular languages L, and L2, recognized respec-

1 X
tively by deterministic finite automata A‘ = (Q],Z],GI,qO,F]) and
Az = (02’22’62’%’}-2).’ that is, L] = L(A]) and L2 = L(Az) Then an

automaton A such that L(A) = L(A1)f\L(A2) is given by

A = (Qizﬁd’q,F)

where

(1) Q@ =q x 0, =((3,3)]3Qq,a € Q)
(2) LU,
(3) 6 is a mapping from Q x £ onto Q such that, for any

symbol "a" from I,
5((9,a),a) = (8,(d,a),6,(q,a))

= (50'§o) is the starting state
= {(aaa)laeF]. aer}

This automaton accepts an input string if and only if both A] and
A2 accept it. In other words, A recognizes all string in the intersection
of L] and L2' The notation introduced above is clarified by the following
example.

Consider the automata

_—
L2
—
g0
1 ]

Ay = (Q)s2y084050Fy)

4)



and

with

where the "+" indicates “or". That is, én element of L(A]) is a (possibly
empty) string of a's of length n (n > 0), followed by a string of at

least one b, and an element of L(Az) is a (possibly empty) string of a's
followed by at least one b, followed by a string of at least one a or b,

with

{qo.q],qz}
{a,b}
8,(q,,2) = q §1(a,,b) =

§;(g,3) = q, 8,(qq,b) =
5](q2,a) = Q Gl(qZ’b) =

(q]}

(Qg:22+85:992F5)

{a,b}

8,(a,.a)=q,  8,(q_,b) =
8,(a453) = a5 8,(q,,b) =
62(q5aa) = q5 52(q5’b) =

{q5}

The state transition diagrams for A1 and A2 are shown in Figs. 12(a)

and (b). The languages recognized by these automata are, respectively,

a" b b" n,m>0
a" b(a + b)(a + b)"

n,m >0

and any combination of a's or b's thereafter.




Figure 12. State transition diagrams for Al'AZ' and A.
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In order to form the automaton A which recognizes L(A])(\L(AZ), we
proceed as follows. Using the notation introduced above,

A = (Qszié’qo’F)
where the starting state is q = (60,30), and
Q=0Q xQ = {(§,,d,),(q,.q,)5(a595) . (ay:8,) »
(9y594)5(ay5850(a550,) 2 (a, 204 )(a5595))

L= 2]\)22 = {a,b}

5((G,,4,),2) = (3.,0,)  8((4,»a,),6) = (ay.a,)

6((q]!q4)sa) = (q29q5) 6((Q]9q4)’b) = (Q]’qS)

8((a,,95),a) = (a,,95)  &((a,,q5),b) = (a,.q5)
8((ay,95),2) = (g,,95)  8((a;,95),b) = (q;,45)
F = {(q'laq5)}

It is noted that the set Q consists of all ordered pairs of states
in Q1 and 02‘ Also the notation (qi’qj) refers to a single state of A,
and is used to accentuate the fact that a state of A arises from states
q; and qj in A] and AZ’ respectively. Thus, A may be viewed as implementing
A] and A2 simultaneously in parallel. Automaton A acts as A] and A2
5riven by the same input, with A accepting an input if and only if both
A] and A2 accept it.

With reference to the above & mappings, it is noted that no transition
functions were specified for (ﬁo,q4).(q],ao).(ﬁo,qs),(q1,50), and (q,,9,)-
The reason for this is easily explained by noting the fact (see Fig. 12)
that these five composite states are combinations of state§ in A] and A2
at least one of which is unreachable starting from 60 and &o, respectively.
This implies that no input string exists which can cause A to reach any
of the five states listed above by starting at its initial state (60,30).
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These unreachable states can be eliminated from the state set Q without
affecting L(A).
The language

L(A) = L(A}) NL(A)) = a" bbb

n,m >0

consists of strings which have the form of a series (possibly empty) of
a's followed by a string of at least two b's, which are the strings which
are accepted by both A] and AZ'

The procedure just discussed has two important implications. First,
if L(A]) and L(AZ) are disjoint, then L(A) will be the empty set, indicat-
ing perfect recognition by A1 and A2. Second, if L{A) is not empty, the
structure of the strings in the overlapping subset can easily be
examined. As indicated in the following section, one approach for
eliminating the overlap is to use semantics. It is also noted that the
method is easily extended to a multiclass situation simply by considering
two classes at a time.




VI. ORGANIZATION OF THE SYNTACTIC/SEMANTIC CHARACTER RECOGNITION SYSTEM

The purpose of this section is to organize the material presented in
the previous sections in the form of a system which utilizes both syntax
and semantics in the recognition process.

The basic approach proposed for designing (training) the recognition
system is shown diagramatically in Fig. 13, where the dashed lines indicate
interactive user inputs. The various stages of this approach are
discussed in the following paragraphs.

The training set consists of a set of thinned characters of known
classification. The hierarchical feature extraction and attribute assign-
ment stage is based on the methods discussed in Section 2. It is noted
that, although the features to be extracted are well defined, the
semantic rules of some of these features require the specification of
one or more thresholds. For example, the semantic rules for lake features
require the specification of thresholds T](4) and T2(4). The procedure
for doing this is to compute this particular feature for all appropriate
characters in the training set and then to select the thresholds as the
minimum values which encompass all acceptable lakes, with the degree of
acceptability being established by the user via a display examination of
these features. In other words, the user must determine what constitutes
an acceptable lake feature and the thresholds are used to place limits on
the class of acceptable features. The selection of thresholds for other
features is carried out in a similar manner.

The next step in the training procedure is to arrange the extracted
features in the form of a string, as discussed in Section 2.10. These
strings are then fed into the grammatical inference stage, where an
automaton is generated for each class using the method discussed in
Section 4. It is noted that the only parameter required by the inference
algorithm is a value of k to establish the k-tail. '

Given a value of k, the resulting automata are then used to recognize
the training set. It is expected that this stage of the process will
require the most intensive user interaction. The automata generated by
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the inference algorithm provide the basic syntax (structure) of the
training set subject to the limitations inherent in regular grammars. It
is unlikely that this formalism by itself will be sufficient to completely
classify the training set correctly. The two tools available to increase
discrimination are the check for class separability shown as the next
stage in Fig. 13, and the use of semantic rules. The set of overlapping
strings in any two classes can easily be established using the procedure
discussed in Section 5. This information can be used to study the struc-
ture of the strings that are not uniquely recognizable, and semantic
rules can be introduced to resolve the conflicts, as discussed in
Section 3. It is noted that the use of a display to show the appropriate
automata and to highlight the state transitions followed in recognizing a
given string will be a valuable aid in establishing the necessary semantic
information.

The design of the syntactic/semantic recognizer is complete once
the training set is recognized with acceptable accuracy. During automatic
operation, the structure of the system consists of the stages shown in
Fig. 14. In this mode of operation a character can be rejected prior to
going into the recognition stage if its features and attributes are
outside the learned thresholds or fail to satisfy the corresponding
semantic rules. If a character passes this test, it is fed into the recog-
nizer (automata). At this point it is assigned to a character class or
rejected if it fails to be accepted by a unique automaton based on the
syntactic/semantic information developed for this stage during the
training phase.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The material discussed in the previous sections represents a unified
approach for the development of a syntactic/semantic character recognition
system. The most important aspects of this approach are: (1) a hierarchical,
semantics-based feature extractor, (2) a formulation that leads to
representations that can be handled with string grammars, (3) the use of
semantics in the recognition process, (4) the use of a procedure for
studying class separability, and (5) a proposed interactive approach
which combines automatic syntactic processing with user-defined semantic
rules.

Although the overall system structure has been developed in some
detail, there are a number of areas that require further investigation.

In particular, we recommend that the following tasks be carried out as the
next step in this project.

Task 1. Extension of semantic rules for the hierarchical feature extractor.

The semantic rules proposed in the report are preliminary. This
task will consist of extending and refining the semantic rules
for feature description in the context of the NORDA OCR system.

Task 2. Evdluate the parsing approach to recognition. This task will

investigate the formulation of a parsing (vs. automaton) approach to
recognition. Parsing algorithms are generally faster and this

task will address the problem of incorporating semantic rules into
the parsing process.

Task 3. Extend the semantic rules for the syntactic/semantic recognizer.
Considerable work remains to be done in proposing semantic rules
for the recognition stage. This task will address the problem
of specifying a set of semantic rules for each of the ten
numeral classes, with possible extension to alphanumerics.

Task 4. Extend the -vntactic/semantic approach to border-oriented
features. Work done to date on the syntactic/semantic approach
has been focused on skeleton-oriented features. It is known
that border-oriented features can be very useful in situations
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involving characters such as filled-in 8's. This task will
address the extension of the hierarchical feature extractor and
the syntactic/semantic recognizer for handling border features.

Refine the interactive approach used in the design of the

recognition system. The approach used in the specification of

semantic rules is highly interactive. This task will consist of
developing a specific formulation for the implementation of this
approach, including techniques for user specification of
relevant parameters.

e o -~ adliiepe s - e
il ot 3
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APPENDIX A

The following discussion deals with elliptical symmetry. This type
of feature is useful in character recognition for determining the quality
of characters composed, either partially or entirely, of elliptical
segments, such as 9's and 0's. Two procedures are developed below. The
first is based on a minimum-error elliptical fit, while the second applies
to any type of symmetry abort two principal axes. Both methods are
independent of rotation.

A.1 Procedure 1
Given K sets of points, Ei,i=],2,...,K, with set Ei containing #Ei
points, the following procedure individually measures elliptical symmetry
about two principal orthogonal axes for each set. In terms of character
recognition, each set Ei contains the coordinate points of, for example,
the skeleton of a character, and i ranges over the number of characters
(K) to be processed.
(a) Let {xn,yn}, n= 1,2,...,#Ei, represent the coordinates of
all points in Ei‘
(b) Define the column vectors z, = (xn,yn)‘, where the prime (~)
indicates transposition.
(c) Compute the 2 x 2 covariance matrix

#Ei

= . .
4 ° ¥ n§1 ZnZp - Iy

where
n el o .

(d) Compute the two orthogonal eigenvectors and corresponding
eigenvalues of gi. (Since the matrix is real and symmetric,
the existence of orthogonal eigenvectors is guaranteed.
Almost any scientific package will contain a subroutine for
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computing the eigenvectors and eigenvalues of a real, symmetric
matrix). These two eigenvectors, denoted by e = (a,b)” and
e, = (c,d)“, point in the directions of principal data spread,
subject to the orthogonality constraint. The amount of
spread is proportional to the eigenvalues and is assumed
for notational convenience that the largest eigenvalue
corresponds to ey-

(e) The equation of an ellipse in the (x,y) plane centered about
m; and with e; and e, as the principal axes is given by

I-] -
(z-m)C(z-m)-0=0

where 6 is a threshold that controls the size of the ellipse.
(f) Find a least-squared elliptical fit to the set of points
{(xn,yn)} by finding a value of 6 which minimizes the quantity

#Ei

R(e) = ] [(zn-m-)’ff](

<1 mi) Ly (z, - my) - 0’ | (1)
It is shown below that both the expected value of (1) and the threshold
which minimizes this expression (i.e., gives the optimum fit) are equal to
the dimensionality of z. Thus, given a set of points to be tested for
symmetry, we obtain a measure of elliptical symmetry by computing (1) with
the optimum threshold and either comparing the result against a perfect
ellipse (i.e., zero error in (1)) or against the expected value of (1).

The first approach is applicable when a fine measure is desired, while the
second approach is more rugged.

R.2 Expected Value of Q(z)
Let

0(z) = (z-m)C(z-m (2)

where z is a random vector of dimension d, and m and C are the mean vector
and covariance matrix of the population from which the z's are drawn.

Consider the linear transformation

u=Az (3)
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where A is a d x d matrix. Then the mean vector of the u's is given by

3
*
"

m

(u)
= E(A z)
(z)

M

|
m

IN

Similarly, the covariance matrix of the u's is given by

o
*
H
m
-~
-
1=
]
1=
*
g
oY
o
[}
3
*
S
»
——

(5)

Since C is a symmetric matrix, a complete set of orthonormal eigenvectors
for this matrix can always be found. If the rows of A are chosen as these
vectors, then Eq. (3) becomes the Hotelling transform and it is well known
that C* will be a diagonal matrix with main diagonal component, A equal
to the variance of the kth component of u, for k = 1,2,...,d.

From Eqs. (2) through (5),

Qu) = (u - m*)‘C*'](g - m*)
= (z- WA AR Az - )
-1 (6)
=(z-mC(z-m
= Q(2)
It then follows that
E{Q(2)} = E{Q(u)} (7)

However, since C* is a diagonal matrix,

nmy}=am-mﬂ£’Wg-wH

E
—
—~——ces
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where oE is the variance of component up which, based on the above discussion,

is equal to A - From Egs. (7) and {8), we then have

E{Q(z)} = 1

[}

That is, the expected value of Q(z) is equal tc tke dimensionality of z.

A.3 Optimum Threshold

Let
0;(z,) = (2, - m) G (2, - m) (10)
Then (1) may be expressed as
#Ei
R(6) = [ 10(z,) - 01 (1)

The minimum of this expression is obtained setting the partial derivative
with respect to 6 equal to zero and then solving for e. The result is

RE AL NEN (12)
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where 8 denotes the value of 6 which minimizes (11). The right side of

Eq. (12) is recognized as an approximation to the expected value of Qi(g),
where the i in this context denotes the population of vectors belonging

to set Ei' It then follows from Egs. (7), (9), and (12) that

6 = E{Q;(2)) = d (13)

In other words, the value of 8 which minimizes {(11) is equal to the
dimension of the z's.

For character recognition applications, the z's are pixel coordinates
and d = 2. Thus, the least square elliptical fit to the points in Ei is
obtained in this case by setting 6 = 0 = 2 in (1).

A.4 Procedure 2
This procedure also uses the eigenvectors described above, but is

more general in the sense that it applies to any type of symmetry about
two principal axes.
(a) Repeat steps (a) through (d) in Procedure 1.
(b) The perpendicular distance between any point Z, in Ei and a line
containing & is given by

z'e
0 (1) - J—g-zl
€21l
v A2 2,1/2 .
where |le, || = [c® + d°) /. Compute the average perpendicular

distance between this line and all points lying on its positive
side (En lies on the positive side of the line if gngz > 0). This
average distance is given by

Dj(1) = -N’—+ I 0, (i)

where the summation is taken over values of n for which gége >0
and N* is the number of points satisfying this condition.
(c) Compute the average perpendicular distance of the points lying
on the negative side of the line containing 8. This quantity

is given by

-~ - e N
Sk ccatl o




0j(i) = = I o ()

where the summation is taken over values of n for which
z7e, < 0 and N~ is the number of points satisfying this

condition.

(d) Repeat steps (b) and (c) using €, to obtain D;(i) and Dé(i).

(e) Define symmetry measures about g and e, as sl(i) =

B](3) = DJ(3)| and s,(i) = [D5(i) - D3T(#)] for i = 1,2,...K.

An average measure of deviation from symmetry about the principal axes is
given by the respective values of s](i) and sz(i). If, for example, the

points in Ei are symmetrical about these axes, then s](i)

= sz(i) = 0.
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APPENDIX B

The following discussion deals with a procedure for corner detection
and quantification. The method was developed in an attempt to incorporate
both local and global information in the corner detection problem. After
experimenting with the technique, however, we found that it lacks sensi-
tivity and that it performs no better than the simpler approaches suggested
in our earlier work [1]. The procedure is included here for completeness
and because its development contains some concepts that may be useful in
other contexts. Its adoption as a useful processing tool is not recommended.

B.1 Background
A corner may be defined as the fortuple C = (c,a,R,8) where c, the

corner point, is the point of intersection of two straight line segments,

a and 8, with lengths|a|>0 and|g|> 0, respectively. It is assumed that

the line segments meet at one of their extremes, forming an interior

angle 6. The corner is said to be acute if 0 < 6 < n/2, right if 6 = /2,
obtuse if /2 < 6 < m, and degenerate if 6 = 0 or 8 = =.

In the continuous domain, and in the absence of noise, the relationship
between 6, |a], and 8| becomes important only near degeneracy or when |u
or |g| approach zero. In the examples shown in Fig. 1, for instance, one
would have difficulty in visually recognizing the presence of a corner only
when 60, 6+n, |a|+0, or |8|+0. In the presence of noise, however, the
relative values of these parameters play a central role in our ability to
detect a corner, as illustrated in Fig. 2. Part (a) of this figure shows
an acute corner which, for all practical purposes, h>; been rendered undetect-
able by the presence of noise. Figure 2(b), by contrast, shows a right
corner with the same values of |a| and |8] and corrupted by the same amount
of noise. This figure is clearly closer to our intuitive concept of a
corner, thus illustrating the importance of 8 in establishing corner-like
properties in a noisy segment.

The relative importance of |a| and |g] is illustrated in Fig. 3.

Part (a) of this figure shows an undetectable acute corner in which |a] and




Fig.

1'

60

Examples of acute, right, and obtuse corners.
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|g] are small with respect to the amount of noise corrupting the segment,
while Fig. 3(b) shows a much more corner-like segment; this figure has the
same amount of noise, but much larger values of |a| and |8|. This effect
is clearly analogous to the concept of increased signal to noise ratio in
communication theory, in the sense that the greater the corruption the
larger |a| and |8| would have to be to define a corner-like segment.

If we view the process of digitizing a segment as a mechanism that
distorts (i.e., introduces noise to) the spatial integrity of the segment,
it is evident from the preceding discussion that the relationship between
the amount of distortion and the parameters 6, |a|, and |g| is an essential
consideration in the development of any procedure for detecting and evalu-
ating corners in digital segments. The examples given in Figs. 2 and 3
also illustrate the futility of using local corner detectors or curve-
tracing techniques which do not take into account the values of these or
similar parameters for finding corners in digital segments.

B.2 Corner Detection and Evaluation

The procedure developed in this section is based on the jdea of utili-
zing a model of an ideal corner in order to establish a measure of corner
"quality" which takes into account segment distortion and the parameters
8, |a|, and |g| defined in the previous section. The following discussion
applies only to simple, thinned digital segments (i.e., thinned segments
which do not cross themselves) with only two distinct end points. Multiply-
connected segments can be nandied by decomposition into simple segments at
the branch points.

With reference to Fig. 4, let C = (c¢,a,8,6) denote an ideal (noise-
less) continuous corner withend points a and b, and denote by A a bound
on the spatial distortion of o and g as a result of digitizing C. The
parameter A could be, for example, a function of the variance of the points
in a digital segment referenced to the straight line segments a and B.

In order to relate C and the "broad" corner defined by the region
between the dashed boundary in Fig. 4, it is necessary to establish a
proportionality factor that involves A, a, B, and 8. This can be
accomplished with the aid of Fig. 5. Let d be a straight line segment

,
- o~ -
s
-’




63

S

(a) : ' (5)

Fig. 3. Effect of |a| and |B| in the detectability of corners
in noisy segments. (a) Noisy acute corner. (b) A corner with
t,:h? same angle and noise, but with _arger values of |a| and

Bi.
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Fig. 4. An ideal corner and bound on the spatial distortion
of the segments a and B.




Fig. 5. Geometrical arrangement used to derive a proportion-
ality factor between an ideal and corresponding distorted
corner.




starting at c, bisecting 6, and ending at the intersection of d with line
5. The projection of A along d is given by

. S (1)
sin(%)

As ) increases for a fixed value of 8, A” increases and the area of
triangle a“c’b” decreases proportionally. Similarly, for fixed A, a decrease
in 8 causes A” to increase and the area of a“c’b”to decrease. Clearly, the
smaller this area, the greater the difference between the ideal corner and
a distorted corner with bound . Suppose, however, that we require that
the distorted corner be scaled so that the area a“c’b” is equal to the
area associated with the ideal corner (i.e., the area of abc). From
elementary trigonometry, it then follows that the length of line d must be

extended to Idel = |d] + A, Writing this as a proportion, we have
EPTERT) (2)
ld| |d]

or, using Eq. (1):

1+ —2 (3)
|d|sin(3)

where y is the proportionality factor Ide|/|d|.

1841
By using the law of sines, it follows from Fig. 5 that 29;
sin(s
: 2
[d] : sing
3T and siné . 4 5o that
a 8] |8]
|8, ]l8 |sine
ld} = —— (a)
|s]sin(3)
|87 o] _
Since d bisects 6, we also have the relation —— = —— and, using the

[s2] 8]
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fact that |5]| + |62| = {§],it follows from Eq. (4) that
la]| 8]sine
Jal = ] (5)
(|a|+|s|)sin§
Substitution of Eq. (5) into Eq. (3) yields
(Ja| + |8])2
=1+ | (6)
|a]|8|sine
This equation may be expressed in terms of the shorter of the two
segments by letting
Loin = min(|al,|8]) (7)
and
. - max(lal,|p]) (8)
min(|a|.|8])
Substitution of Eqs. (7) and (8) into Eq. (6) yields
1 +r)i
y=1+ (9)
erins‘"e
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